11 research outputs found

    Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea

    Get PDF
    AbstractThe Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more.</jats:p

    Enhanced Simulation of the Indian Summer Monsoon Rainfall Using Regional Climate Modeling and Continuous Data Assimilation

    No full text
    This study assesses a Continuous Data Assimilation (CDA) dynamical-downscaling algorithm for enhancing the simulation of the Indian summer monsoon (ISM) system. CDA is a mathematically rigorous technique that has been recently introduced to constrain the large-scale features of high-resolution atmospheric models with coarse spatial scale data. It is similar to spectral nudging but does not require any spectral decomposition for scales separation. This is expected to be particularly relevant for ISM, which involves various interactions between large-scale circulations and regional physical processes. Along with a control simulation, several downscaling simulations were conducted with the Weather Research and Forecasting (WRF) model using CDA, spectral (retaining different wavenumbers) and grid nudging for three ISM seasons: normal (2016), excess (2013), and drought (2009). The simulations are nested within the NCEP Final Analysis and the model outputs are evaluated against the observations. Compared to grid and spectral nudging, the simulations using CDA produce enhanced ISM features over the Indian subcontinent including the low-level jet, tropical easterly jet, easterly wind shear, and rainfall distributions for all investigated ISM seasons. The major ISM processes, in particular the monsoon inversion over the Arabian Sea, tropospheric temperature gradients and moist static energy over central India, and zonal wind shear over the monsoon region, are all better simulated with CDA. Spectral nudging outputs are found to be sensitive to the choice of the wavenumber, requiring careful tuning to provide robust simulations of the ISM system. In contrast, control and grid nudging generally fail to well reproduce some of the main ISM features

    Towards an end-to-end analysis and prediction system for weather, climate, and Marine applications in the Red Sea

    No full text
    The Red Sea, home to the second-longest coral reef system in the world, is a vital resource for the Kingdom of Saudi Arabia. The Red Sea provides 90% of the Kingdom’s potable water by desalinization, supporting tourism, shipping, aquaculture, and fishing industries, which together contribute about 10%–20% of the country’s GDP. All these activities, and those elsewhere in the Red Sea region, critically depend on oceanic and atmospheric conditions. At a time of mega-development projects along the Red Sea coast, and global warming, authorities are working on optimizing the harnessing of environmental resources, including renewable energy and rainwater harvesting. All these require high-resolution weather and climate information. Toward this end, we have undertaken a multipronged research and development activity in which we are developing an integrated data-driven regional coupled modeling system. The telescopically nested components include 5-km- to 600-m-resolution atmospheric models to address weather and climate challenges, 4-km- to 50-m-resolution ocean models with regional and coastal configurations to simulate and predict the general and mesoscale circulation, 4-km- to 100-m-resolution ecosystem models to simulate the biogeochemistry, and 1-km- to 50-m-resolution wave models. In addition, a complementary probabilistic transport modeling system predicts dispersion of contaminant plumes, oil spill, and marine ecosystem connectivity. Advanced ensemble data assimilation capabilities have also been implemented for accurate forecasting. Resulting achievements include significant advancement in our understanding of the regional circulation and its connection to the global climate, development, and validation of long-term Red Sea regional atmospheric–oceanic–wave reanalyses and forecasting capacities. These products are being extensively used by academia, government, and industry in various weather and marine studies and operations, environmental policies, renewable energy applications, impact assessment, flood forecasting, and more. © 2021 American Meteorological Societ
    corecore